Evolutionary Stratified Instance Selection applied to Training Set Selection for Extracting High Precise-Interpretable Classification Rules

نویسندگان

  • José Ramón Cano
  • Francisco Herrera
  • Manuel Lozano
چکیده

The generation of predictive models is a frequent task in data mining with the objective of generating high precise and interpretable models. The data reduction is an interesting preprocessing approach that can allow us to obtain predictive models with these characteristics in large size data sets. In this contribution, we analyze the predictive model extraction based on rules using a training selected set via evolutionary stratified instance selection. This method face to the scaling up problem that appears in the evaluation of large size data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability

The generation of predictive models is a frequent task in data mining with the objective of generating highly precise and interpretable models. The data reduction is an interesting preprocessing approach that can allow us to obtain predictive models with these characteristics in large size data sets. In this paper, we analyze the rule classification model based on decision trees using a trainin...

متن کامل

A Study on the Combination of Evolutionary Algorithms and Stratified Strategies for Training Set Selection in Data Mining

Evolutionary algorithms are adaptive methods based on natural evolution that may be used for search and optimization. As Training Set Selection can be viewed as a search problem, it could be solved using evolutionary algorithms. In this paper, we have carried out an empirical study of the performance of CHC as representative evolutionary algorithm model. This study includes a comparison between...

متن کامل

On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining

In this paper we present a new approach for training set selection in large size data sets. The algorithm consists on the combination of stratification and evolutionary algorithms. The stratification reduces the size of domain where the selection is applied while the evolutionary method selects the most representative instances. The performance of the proposal is compared with seven non-evoluti...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004